Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 38(1): e3541, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697909

RESUMO

Ménière's disease is an inner ear disorder, associated with episodes of vertigo, fluctuant hearing loss, tinnitus, and aural fullness. Ménière's disease is associated with endolymphatic hydrops. Clinical evidences show that this disease is often incapacitating, negatively affecting the patients' everyday life. The pathogenesis of Ménière's disease is still not fully understood and remains unclear. Previous numerical studies available in the literature related with endolymphatic hydrops, are very scarce. The present work applies the finite element method to investigate the consequences of endolymphatic hydrops in the normal hearing, associated with the Ménière's disease. The obtained results for the steady state dynamics analysis are in accordance with clinical evidences. The results show that the basilar membrane is not affected in the same intensity along its length and that the lower frequencies are more affected by the endolymphatic hydrops. From a clinical point of view, this work shows the relationship between the increasing of the endolymphatic pressure and the development of hearing loss.


Assuntos
Hidropisia Endolinfática , Doença de Meniere , Membrana Basilar , Hidropisia Endolinfática/complicações , Análise de Elementos Finitos , Humanos , Doença de Meniere/complicações
2.
Proc Inst Mech Eng H ; 236(1): 72-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34546141

RESUMO

Chronic otitis media enables the appearance of a benign middle ear tumor, known as a cholesteatoma, that may compromise hearing. To evaluate the influence of a cholesteatoma growth on the hearing function, a computational middle ear model based on the finite element method was used and three different size of cholesteatoma were modeled. The cholesteatoma solidification and the consequent degradation of the ossicles were also simulated as two condition that commonly occurs during cholesteatoma evolution. A sound pressure level of 80 dB SPL was applied in the tympanic membrane and a steady state analysis was performed for frequencies from 100 Hz to 10 kHz. The displacements of both the tympanic membrane and the stapes footplate were measured. The results were compared with a healthy case and it was shown that the cholesteatoma development leads to a decrease in the umbo and stapes displacements. The ossicles degradation simulation showed the higher difference comparing with the cholesteatoma in an initial stage, with lower displacements in the stapes footplate mainly for high frequencies. The observed displacement differences are directly connected to hearing loss, being possible to conclude that cholesteatoma evolution in the middle ear will lead to hearing problems, mainly in an advanced stage.


Assuntos
Colesteatoma , Orelha Média , Audição , Humanos , Estribo , Membrana Timpânica
3.
Proc Inst Mech Eng H ; 235(7): 743-750, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33749399

RESUMO

Hearing impairment is one of the most common health disorders, affecting individuals of all ages, reducing considerably their quality of life. At present, it is known that during an acoustic stimulation a travelling wave is developed inside the cochlea. Existing mathematical and numerical models available in the literature try to describe the shape of this travelling wave, the majority of them present a set of approaches based on some limitations either or both of the mechanical properties used and the geometrical description of the realistic representation. The present numerical study highlights the distinctions of using a spiral model of the cochlea, by comparing the obtained results with a straight, or simplified model. The influence of the implantation of transversely isotropic mechanical models was also studied, by comparing the basilar membrane with isotropic and transversely isotropic mechanical properties. Values of the root mean square error calculated for all models show a greater proximity of the cochlear mapping to the Greenwood function when the basilar membrane is assumed with transversely isotropic mechanical properties for both straight and spiral model. The root-mean square errors calculated were: 2.05, 1.70, 2.72, 2.08 mm, for the straight-isotropic, straight-transversely isotropic, spiral-isotropic and spiral-transversely isotropic model, respectively.


Assuntos
Membrana Basilar , Qualidade de Vida , Estimulação Acústica , Cóclea , Humanos
4.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164377

RESUMO

Radiological monitoring is fundamental for compliance with radiological protection policies in the aftermath of radiological events, such as nuclear accidents, terrorism, and out-of-commission uranium mines. An effective strategy for radiation monitoring is to use radiation detectors coupled with Unmanned Aerial Vehicles (UAVs), enabling for quicker surveillance of large areas without involving the need of human presence in the target area. The main aim of this study was to formulate the parameters for a UAV flight strategy in preparation for future field measurements using Geiger-Muller Counters (GMC) and Cadmium Zinc Telluride (CZT) spectrometers. As a proof of concept, the prepared flight strategy will be used to survey out-of-commission uranium mines in northern Portugal. Procedures to assure the calibration of the CZT and verification of the GMCs were conducted, as well as a sensitivity analysis of the sensors considering different acquisition times, distance to source, and detector response time. This article reports specific parameters, such as UAV distance to ground, time of exposition, speed, and the methodology to perform the identification and calculate the activity of possible radioactive sources. An effective flight strategy is also presented, aiming to use radiation detectors coupled with UAVs to undertake extensive monitoring of areas with enhanced levels of environmental radiation, which is of prime importance due to the lasting hazardous effects of enhanced environmental radiation in the nearby ecosystem and population.


Assuntos
Técnicas Biossensoriais , Cádmio/química , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radiometria , Tecnologia de Sensoriamento Remoto , Telúrio/química , Zinco/química , Poluentes Radioativos do Ar/análise , Calibragem , Ecossistema , Humanos , Portugal , Radiografia
5.
Comput Methods Biomech Biomed Engin ; 21(6): 461-469, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30010395

RESUMO

Vertiginous symptoms are one of the most common symptoms in the world, therefore investing in new ways and therapies to avoid the sense of insecurity during the vertigo episodes is of great interest. The classical maneuvers used during vestibular rehabilitation consist in moving the head in specific ways, but it is not fully understood why those steps solve the problem. To better understand this mechanism, a three-dimensional computational model of the semicircular ducts of the inner ear was built using the finite element method, with the simulation of the fluid flow being obtained using particle methods. To simulate the exact movements performed during rehabilitation, data from an accelerometer were used as input for the boundary conditions in the model. It is shown that the developed model responds to the input data as expected, and the results successfully show the fluid flow of the endolymph behaving coherently as a function of accelerometer data. Numerical results at specific time steps are compared with the corresponding head movement, and both particle velocity and position follow the pattern that would be expected, confirming that the model is working as expected. The vestibular model built is an important starting point to simulate the classical maneuvers of the vestibular rehabilitation allowing to understand what happens in the endolymph during the rehabilitation process, which ultimately may be used to improve the maneuvers and the quality of life of patients suffering from vertigo.


Assuntos
Acelerometria/instrumentação , Simulação por Computador , Endolinfa/fisiologia , Vertigem/reabilitação , Vestíbulo do Labirinto/fisiopatologia , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Qualidade de Vida , Canais Semicirculares/fisiopatologia
6.
Proc Inst Mech Eng H ; 230(11): 999-1007, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27591576

RESUMO

The ear is one of the most complex organs in the human body. Sound is a sequence of pressure waves, which propagates through a compressible media such as air. The pinna concentrates the sound waves into the external auditory meatus. In this canal, the sound is conducted to the tympanic membrane. The tympanic membrane transforms the pressure variations into mechanical displacements, which are then transmitted to the ossicles. The vibration of the stapes footplate creates pressure waves in the fluid inside the cochlea; these pressure waves stimulate the hair cells, generating electrical signals which are sent to the brain through the cochlear nerve, where they are decoded. In this work, a three-dimensional finite element model of the human ear is developed. The model incorporates the tympanic membrane, ossicular bones, part of temporal bone (external auditory meatus and tympanic cavity), middle ear ligaments and tendons, cochlear fluid, skin, ear cartilage, jaw and the air in external auditory meatus and tympanic cavity. Using the finite element method, the magnitude and the phase angle of the umbo and stapes footplate displacement are calculated. Two slightly different models are used: one model takes into consideration the presence of air in the external auditory meatus while the other does not. The middle ear sound transfer function is determined for a stimulus of 60 dB SPL, applied to the outer surface of the air in the external auditory meatus. The obtained results are compared with previously published data in the literature. This study highlights the importance of external auditory meatus in the sound transmission. The pressure gain is calculated for the external auditory meatus.


Assuntos
Orelha/fisiologia , Modelos Biológicos , Acústica , Simulação por Computador , Orelha/anatomia & histologia , Análise de Elementos Finitos , Humanos , Som , Membrana Timpânica/fisiologia
7.
J Biomech ; 49(9): 1518-1523, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27036071

RESUMO

The eardrum separates the external ear from the middle ear and it is responsible to convert the acoustical energy into mechanical energy. It is divided by pars tensa and pars flaccida. The aim of this work is to analyze the susceptibility of the four quadrants of the pars tensa under negative pressure, to different lamina propria fibers distribution. The development of associated ear pathology, in particular the formation of retraction pockets, is also evaluated. To analyze these effects, a computational biomechanical model of the tympano-ossicular chain was constructed using computerized tomography images and based on the finite element method. Three fibers distributions in the eardrum middle layer were compared: case 1 (eardrum with a circular band of fibers surrounding all quadrants equally), case 2 (eardrum with a circular band of fibers that decreases in thickness in posterior quadrants), case 3 (eardrum without circular fibers in the posterior/superior quadrant). A static analysis was performed by applying approximately 3000Pa in the eardrum. The pars tensa of the eardrum was divided in four quadrants and the displacement of a central point of each quadrant analyzed. The largest displacements of the eardrum were obtained for the eardrum without circular fibers in the posterior/superior quadrant.


Assuntos
Fenômenos Mecânicos , Membrana Timpânica , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...